Beschreibung und Anleitung für:

'WinManu 2.0'

Meßprogramm für Handmeßplätze

STAND: 29.01.2001

(C) R.Fink 1999/2000/2001

/

R.FINK

www.IB-Fink.de

ING.-BÜRO

93170 Bernhardswald

Entwicklung von Hard- und Software Tel.: 09407/90640 Fax.: 09407/90641

1.0 Installation:

- In Verzeichnis des Quelllaufwerks wechseln: C:> A:
- Eingeben: Install

Im Laufwerk C: werden folgenden Verzeichnisse generiert:

- WinManu
- Manu_Par
- Manu_Par\HandAPA
- Manu_Par\HandPara
- Daten
- Daten\SDaten
- Daten\CDaten
- Daten\EDaten
- Daten\KDaten

2.0 Bedienung:

Weitgehend identisch zur Version Manu1.0 (DOS-Programm)

3.0 Programmstart:

3.1 Entwicklungsversion:

- Start von Visual-Basic 5.0
- Laden der Projektdatei: C:\WinManu\Winmanu.vbp
- Starten des Testdurchlaufs (Interpretermodus)

3.2 Runtime-Version

• Start über das EXE-Programm C:\WinManu\WinManu.exe (NT-Explorer oder manuell installierte Icone am Desktop)

4. Initialisierung:

Geräte und Pfadeinstellungen sind über die Datei ,WinManu.INI' einzustellen. Sie muß sich im aktuellen Windows-Verzeichnis (z.B. C:\WinNT) befinden.

Hier wird auch der Netzwerkpfad angegeben, in dem sich die Initialisierungsdatei im Netzwerk befinden muß. In dieser Datei (z.B. "Prog_24" für den Meßplatz 24) sind dann die weiteren Netzwerkpfade angegeben, unter denen die Dateien dann im Netzwerk abgespeichert werden können.

www.IB-Fink.de

5. Hilfs- und Zusatzdateien:

93170 Bernhardswald

6. Programmerweiterungen:

6.1. Zusammenführung der Scheibenstatistik von Haupt- und Nachmessung

Ab der Programmversion 2.04 (April 1999) ist es möglich, Dateien der Haupt- und der Nachmessung miteinander zu fusionieren. Der Sinn liegt darin, daß Ausfallchips der Hauptmessung in einer anschließenden Nachmessung zwar als ,gut' bewertet werden, diese gemessene Verbesserung der Scheibenqualität aber bei der Lieferung der Scheiben nicht bekanntgegeben werden kann. Darum werden die Werte der Ausfallchips bei der Hauptmessung durch die Werte der gutgemessenen Chips der Nachmessung ersetzt und anschließend eine erneute Scheibenstatistik generiert. In der Version bis Mai 1999 wird dieses File mit den fusionierten Werten zwar erstellt, aber nicht als .. SCH'-File abgespeichert. Erst wenn die Fusionierung einwandfrei getestet ist, werden diese Files freigegeben.

Um das Fusionieren der beiden Statistiken freizugeben, müssen im jeweiligen APA-File drei Ergänzungen durchgeführt werden:

Zeile 6: Ergänzung um den Parameter ,0' oder ,1', ob ein Ausdruck (Erstellung) der fusionierten Scheibenstatistiken erwünscht ist

Zeile 7: Ergänzung um den Parameter ,0' oder ,1', ob eine Abspeicherung (Erstellung) der fusionierten Scheibenstatistiken erwünscht ist.

- Zeile32:

- bis Version 2.04 vom 19.07.99:

32) 10;20;

Meßzeit des Cas140B für LambdaMessungen (für alle Mp) Verzögerungszeit zwischen Stromeinprägung und Messung die Einstellung des CAS140- Filters entspricht der Eintragung der Meßkopfposition (Zeile12 des aktuellen APA-Files)

- ab Version 2.05 vom 08.08.99:

- Zeile135:

- bis Version 2.04 vom 19.07.99:

135) 10;20; Meßzeit des Cas140B für LambdaMessungen (für alle Mp) Verzögerungszeit zwischen Stromeinprägung und Messung die Einstellung des CAS140- Filters entspricht der Eintragung der Meßkopfposition (Zeile12 des aktuellen APA-Files)

- ab Version 2.05 vom 08.08.99:

Delayzeit (lelv)	Meßzeit	Filter(lelv)
135) 10;10;10;10;10;10;10;10;10;10;10;10;10;1	0/20;20;20;/	2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;
		MP21 MP30 MP21

- Zeile 508: Raster und Gutkriterium der Haupt- und Nachmessung.

Beispiel: 508) 1;4;2;
Bedeutet: Raster der Hauptmessung: 1 Chip/qcm Raster der Nachmessung: 4 Chips/qcm Anzahl gute Chips für Nachmessung: 2. Sobald in der Nachmessung mindestens zwei Chips (der vier Chips) als gut gemessen worden sind, gilt der Chip in der Hauptmessung ebenfalls als ,gut'. Hier wird das Verhältnis zwischen Nach- und Hauptmessung berücksichtigt.

> Bei einer Parametrierung von "2;4;2;" müßten pro Chip der Hauptmessung also zwei Chips nachgemessen werden. Bei der Nachmessung müssen zwei nachgemessene Chips in diesem Raster in Ordnung sein. Das bedeutet, daß für einen Chip der Hauptmessung zwei Chips nachgemessen werden und von

INGBÜRO	R.FINK /	Entwicklung von	Hard- und Software
93170 Bernhardswald	www.IB-Fink.de	Tel.: 09407/90640	Fax.: 09407/90641

diesen zwei Chips der Nachmessung muß ein Chip in Ordnung sein. Stichwort für mathematische Erklärung: alle Angaben: auf ,1' der Hauptmessung normieren.

7. Beschreibung Meßprozeduren:

7.1 Initialisierung SMU238 bei Programmstart

actory-Defaults	JO
Source, V-Measure, DC-Betrieb	F1,0
2.0V Compliance / Measure Autorange	L12.0,0
Digit-Auflösung/Linecycle-Integration	S3
emote-Sense/Vierdrahtmessung/Kelvin-Kontakt	01
atenformat: ASCII ohne Prefix und Suffix	G4,2,0
ein Default-Delay	W0
mA Bias-Strom	B0.0,0,0
2.0V Compliance / Measure Autorange Digit-Auflösung/Linecycle-Integration emote-Sense/Vierdrahtmessung/Kelvin-Kontakt atenformat: ASCII ohne Prefix und Suffix ein Default-Delay mA Bias-Strom	L12.0,0 S3 O1 G4,2,0 W0 B0.0,0,0

7.2 Uf-Messung

7.2.1. Vorgaben durch APA:

- Verzögerungszeit/Pulszeit für eine Messung
- Einzuprägende Ströme If (3x: If1, If2, If3)
- Boolsche Variable, ob Messung für If1, If2 oder If3 durchgeführt werden soll •
- Maximal zulässige Spannung für jedes If (Compliance): Uf1, Uf2 und Uf3
- GND-Verbindung des Chip über Chuck oder zusätzliches Nadelpaar
- APA-Korrekturfaktor für Uf-Messung •
- APA-Korrekturoffset für Uf-Messung
- Meßplatz-Korrekturfaktor für Uf-Messung
- Meßplatz -Korrekturoffset für Uf-Messung •

7.2.2. Meßzvklus:

- SMU238 in Standby schalten (vorsichtshalber)
- SMU238: Mode wechseln: ,Stromeinprägung' und ,Pulsfunktion' (nur ein Puls pro Messung) •
- SMU238: Anhand vorgegebener Verzögerungszeit die Integrationszeit der SMU einstellen: • bis 10ms: 417us (=4 Digit)
- 11 37ms: 5ms (=4 Digit) •
- > 37ms: 20ms (=5 Digit)
- Relaisscanner durchschalten; High-Pfade für Uf-Kelvin-Kontakt (bisherige Durchschaltung löschen) •
- Relaisscanner durchschalten; GND anhand APA-Vorgabe auf Chuck oder Nadel
- SMU238: Von Standby auf ON schalten
- Arbeitsschleife mit drei Durchläufen aufbauen (für jede mögliche Stromeinprägung):
 - Messung für betreffenden Strom freigegeben? Wenn nein, den Meßblock überspringen
 - SMU238: Anhand Ufx den Range der Compliance einstellen (<15V oder >=15V) •
 - SMU238: Einzuprägender Strom einstellen
 - SMU238: Anhand der Größenordnung des Stroms den Meßbereich einstellen
 - SMU238: Messung triggern
 - SMU238: Meßwert abholen (nur ein Meßwert)
 - Meßwert mit Absolutfunktion versehen
 - Meßwert mit Korrekturfaktor multiplizieren
 - Meßwert mit Korrekturoffset versehen (addieren)
 - Meßwert in globaler Variablen ablegen
- Ende der Arbeitsschleife, ab hier wieder komplett gültig
- SMU238: von ON auf Standby schalten

93170 Bernhardswald

- SMU238: Integrationszeit auf 20ms zurückstellen
- SMU238: Mode wechseln auf ,Stromeinprägung' und ,DC'

ING.-BÜRO R.FINK / www.IB-Fink.de

7.3 Ubr-Messung

7.3.1.Vorgaben durch APA:

- Verzögerungszeit für eine Messung
- Einzuprägende Ströme If (3x: If1, If2, If3)
- Boolsche Variable, ob Messung für If1. If2 oder If3 durchgeführt werden soll •
- Maximal zulässige Spannung für jedes If (Compliance): Ubr1, Ubr2 und Ubr3
- GND-Verbindung des Chip über Chuck oder zusätzliches Nadelpaar •
- APA-Korrekturfaktor für Ubr-Messung
- APA-Korrekturoffset für Ubr-Messung
- Meßplatz-Korrekturfaktor für Ubr-Messung •
- Meßplatz -Korrekturoffset für Ubr-Messung

7.3.2. Meßzyklus:

- SMU238 in Standby schalten (vorsichtshalber)
- SMU238: 0mA als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen .
- SMU238: Integrationszeit auf Linecycle einstellen .
- SMU238: Bei Verwendung einer Niederstromkarte von ,Remote' auf ,Sense' (Vierdraht auf • Zweidrahtmessung) umschalten
- SMU238: Compliance anhand APA-Vorgabe einstellen, dabei Meßbereich wählen zwischen 15V und 110V •
- Relaisscanner durchschalten; High-Pfade für Ubr-Kelvin-Kontakt (bisherige Durchschaltung löschen) •
- Relaisscanner durchschalten; GND anhand APA-Vorgabe auf Chuck oder Nadel •
- SMU238: Von Standby auf ON schalten .
- Arbeitsschleife mit drei Durchläufen aufbauen (für jede mögliche Stromeinprägung):
 - Messung für betreffenden Strom freigegeben? Wenn nein, den Meßblock überspringen •
 - SMU238: Einzuprägenden Strom einstellen (DC)
 - Delayzeit über PC-Warteschleife
 - SMU238: Meßwert abholen
 - Meßwert mit Absolutfunktion versehen
 - Meßwert mit Korrekturfaktor multiplizieren
 - Meßwert mit Korrekturoffset versehen (addieren)
 - Meßwert in globaler Variablen ablegen
- Ende der Arbeitsschleife, ab hier wieder komplett gültig .
- SMU238: Bias 0mA einprägen (löschen der letzten Stromvorgabe)
- SMU238: Remote (Vierdrahtbetrieb) einschalten

93170 Bernhardswald

SMU238: Mode wechseln auf ,Stromeinprägung' und ,DC'

ING.-BÜRO R.FINK / www.IB-Fink.de

7.4 Wellenlängen-Messung mit CAS140B

7.4.1.Vorgaben durch APA:

- Verzögerungszeit für eine Messung
- Filter für CAS140
- Integrationszeit des CAS140
- Einzuprägende Ströme If (3x: If1, If2, If3)
- Boolsche Variable, ob Messung für If1, If2 oder If3 durchgeführt werden soll
- Maximal zulässige Spannung f
 ür des If (Compliance); Sense-Eingang der SMU ist auf zweite Nadel f
 ür Uf-Messung gelegt
- APA-Korrekturfaktoren für Lambda-Dom-Messung
- APA-Korrekturoffsets f
 ür Lambda-Dom –Messung
- Meßplatz-Korrekturfaktoren für Lambda-Dom-Messung
- Meßplatz -Korrekturoffsets für Lambda-Dom -Messung

7.4.2. Meßzyklus:

- Filter am CAS140 einstellen
- SMU238 in Standby schalten (vorsichtshalber)
- SMU238: 0mA als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen; Range=1,5V; Delayzeit=0ms)
- SMU238: Integrationszeit auf Linecycle einstellen
- SMU238: Bei Verwendung einer Niederstromkarte von "Remote" auf "Sense" (Vierdraht auf Zweidrahtmessung) umschalten
- SMU238: Compliance anhand APA-Vorgabe einstellen, dabei Meßbereich wählen zwischen 15V und 110V
- Relaisscanner durchschalten; High-Pfade für Uf-Kelvin-Kontakt (bisherige Durchschaltung löschen)
- Relaisscanner durchschalten; GND anhand APA-Vorgabe auf Chuck oder Nadel
- SMU238: 0mA als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen; Range=Automatik; Delayzeit=0ms)
- SMU238: Von Standby auf ON schalten
- Arbeitsschleife mit drei Durchläufen aufbauen (für jede mögliche Stromeinprägung):
 - Messung für betreffenden Strom freigegeben? Wenn nein, den Meßblock überspringen
 - SMU238: Einzuprägenden Strom einstellen (DC)
 - Bei erster Messung der Scheibe: CAS140: Integrationszeit einstellen
 - Bei erster Messung der Scheibe: CAS140: Hintergrundbeleuchtung (Background-Data) einscannen, Gerät abgleichen
 - CAS140: Integrationszeit einstellen
 - Delayzeit über PC-Warteschleife
 - Meßwert (Lambda-Dom) abholen. (le/lv-Werte und Lambda-Peak verwerfen)

/

www.IB-Fink.de

- Meßwert mit Korrekturfaktoren multiplizieren (Meßplatz und APA)
- Meßwert mit Korrekturoffsets versehen (addieren) (Meßplatz und APA)
- Meßwerte runden

ING.-BÜRO R.FINK

93170 Bernhardswald

- Meßwert in globaler Variablen ablegen
- Ende der Arbeitsschleife, ab hier wieder komplett gültig
- SMU238: In Standby schalten
- SMU238: Bias 0mA einprägen (löschen der letzten Stromvorgabe)

7.5 le/lv-Messung mit CAS140B

7.5.1.Vorgaben durch APA:

- Verzögerungszeit für eine Messung
- Filter für CAS140
- Integrationszeit des CAS140
- Einzuprägende Ströme If (3x: If1, If2, If3)
- Boolsche Variable, ob Messung für If1, If2 oder If3 durchgeführt werden soll
- Maximal zulässige Spannung f
 ür If (Compliance); Sense-Eingang der SMU ist auf zweite Nadel f
 ür Uf-Messung gelegt
- APA-Korrekturfaktoren für le/lv-Messung
- APA-Korrekturoffsets f
 ür le/lv-Messung
- Meßplatz-Korrekturfaktoren f
 ür le/lv-Messung
- Meßplatz -Korrekturoffsets für le/lv-Messung

7.5.2. Meßzyklus:

- CAS140: Filter einstellen
- SMU238 in Standby schalten (vorsichtshalber)
- SMU238: 0mA als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen; Range=1,5V; Delayzeit=0ms)
- SMU238: Integrationszeit auf Linecycle einstellen
- SMU238: Bei Verwendung einer Niederstromkarte von "Remote" auf "Sense" (Vierdraht auf Zweidrahtmessung) umschalten
- SMU238: Compliance anhand APA-Vorgabe einstellen, dabei Meßbereich wählen zwischen 15V und 110V
- Relaisscanner durchschalten; High-Pfade für Uf-Kelvin-Kontakt (bisherige Durchschaltung löschen)
- Relaisscanner durchschalten; GND anhand APA-Vorgabe auf Chuck oder Nadel
- SMU238: 0mA als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen; Range=Automatik; Delayzeit=0ms)
- SMU238: Von Standby auf ON schalten
- Arbeitsschleife mit drei Durchläufen aufbauen (für jede mögliche Stromeinprägung):
 - Messung für betreffenden Strom freigegeben? Wenn nein, den Meßblock überspringen
 - SMU238: Einzuprägenden Strom einstellen (DC)
 - Delayzeit über PC-Warteschleife
 - Bei erster Messung der Scheibe: CAS140: Integrationszeit einstellen
 - Bei erster Messung der Scheibe: CAS140: Hintergrundbeleuchtung (Background-Data) einscannen, Gerät abgleichen

/

www.IB-Fink.de

- CAS140: Integrationszeit einstellen
- Meßwerte (le/lv) abholen. (Wellenlängenwerte verwerfen)
- Meßwert mit Korrekturfaktoren multiplizieren (Meßplatz und APA)
- Meßwert mit Korrekturoffsets versehen (addieren) (Meßplatz und APA)
- Meßwerte runden

ING.-BÜRO R.FINK

93170 Bernhardswald

- Meßwert in globaler Variablen ablegen
- Ende der Arbeitsschleife, ab hier wieder komplett gültig
- SMU238: In Standby schalten
- SMU238: Bias 0mA einprägen (löschen der letzten Stromvorgabe)

7.6 Ir-Messung

7.6.1. Vorgaben durch APA:

- Verzögerungszeit für eine Messung
- Anzulegende Spannungen Ur (3x: Ur1, Ur2, Ur3)
- Boolsche Variable, ob Messung für Ir1, Ir2 oder Ir3 durchgeführt werden soll •
- Maximal zulässiger Strom für jedes Uf (Compliance): If1, If2 und If3
- GND-Verbindung des Chip über Chuck oder zusätzliches Nadelpaar •
- APA-Korrekturfaktor für Ir-Messung
- APA-Korrekturoffset für Ir-Messung
- Meßplatz-Korrekturfaktor für Ir-Messung •
- Meßplatz -Korrekturoffset für Ir-Messung

7.6.2. Meßzyklus:

- SMU238 in Standby schalten (vorsichtshalber)
- SMU238: Mode von Stromquelle auf Spannungsquelle umschalten (DC-Betrieb bleibt) .
- SMU238: Integrationszeit auf Linecycle einstellen •
- SMU238: 0V als Bias vorgeben (Rücksetzen eventueller anderer SMU-Einstellungen
- SMU238: Compliance anhand APA-Vorgabe einstellen, dabei Meßbereich auf Automatik einstellen •
- Relaisscanner durchschalten; High-Pfade für Ur-Kelvin-Kontakt (bisherige Durchschaltung löschen) •
- Relaisscanner durchschalten; GND anhand APA-Vorgabe auf Chuck oder Nadel
- SMU238: Bei Verwendung einer Niederstromkarte von ,Remote' auf ,Sense' (Vierdraht auf Zweidrahtmessung) umschalten
- SMU238: Von Standby auf ON schalten •
- Arbeitsschleife mit drei Durchläufen aufbauen (für jede mögliche Stromeinprägung):
 - Messung für betreffende Spannung freigegeben? Wenn nein, den Meßblock überspringen
 - SMU238: Anzulegende Spannung einstellen (DC)
 - Delayzeit über PC-Warteschleife
 - SMU238: Meßwert abholen
 - Meßwert mit Absolutfunktion versehen
 - Meßwert mit Korrekturfaktoren multiplizieren
 - Meßwert mit Korrekturoffsets versehen (addieren)
 - Meßwert in globaler Variablen ablegen
- Ende der Arbeitsschleife, ab hier wieder komplett gültig .
- SMU238: Bias 0V anlegen (löschen der letzten Spannungsvorgabe)
- SMU238: Remote (Vierdrahtbetrieb) einschalten

93170 Bernhardswald

SMU238: Mode wechseln auf ,Stromeinprägung' und ,DC'

ING.-BÜRO R.FINK / www.IB-Fink.de

8. WinManu.INI Deklarationen:

Das File ,WinManu.INI' muß im Verzeichnis des Betriebssystems stehen (z.B. C:\WinNt\WinManu.Ini). Als Beispiel gibt es auch im Verzeichnis ,C:\WinManu\Winmanu.Ini' diese Datei, die aber vom Programmablauf her keine Rolle spielt. Sie dient nur zur Darstellung der möglichen Parameter

8.1 Messplatz

8.2 Equipment

8.2.1. SLOWMODE IE DETEKTOR

Damit werden Sicherheitsabfragen für die SMU238 im Programmablauf eingefügt. Es ist der Programmteil betroffen, bei dem das <u>le</u> mit einem <u>Detektor</u> gemessen wird. Aus den binären Ziffern wird eine Zahl zusammengestellt, mit dem der Meßplatz optimal schnell läuft, ohne daß die SMU238 blockiert. Eine logische ,1' bedeutet, daß die Sicherheitsabfrage aktiviert ist. Bei einer logischen ,0' in diesem Bit wird die Sicherheitsabfrage umgangen. Es können bis zu 8 Werte eingestellt werden. Daraus ergibt sich ein Wertebereich von 0 bis 255.

Wert:	Bedeutung:
1	Nach Einstellung Integrationszeit der SMU238; Vor Nullung SMU238 auf 0mA DC
2	Nach Einstellung SMU238 mit 0mA DC; Vor Einstellung Compliance
4	Nach Umstellung SMU238 auf Pulsbetrieb
8	Vor Einschalten der SMU (Operate)
16	Vor Einstellen der Pulsparameter (Pulsstrom, Pulszeit)
32	Vor Triggerung der SMU238
64	Nach Messung; Vor Ausschalten der SMU238
128	Nach Ausschalten der SMU238; Vor Umstellen von Pulsbetrieb auf DC-Betrieb

8.2.2. SLOWMODE_IV_DETEKTOR

Damit werden Sicherheitsabfragen für die SMU238 im Programmablauf eingefügt. Es ist der Programmteil betroffen, bei dem das <u>Iv</u> mit einem <u>Detektor</u> gemessen wird. Aus den binären Ziffern wird eine Zahl zusammengestellt, mit dem der Meßplatz optimal schnell läuft, ohne daß die SMU238 blockiert. Eine logische ,1' bedeutet, daß die Sicherheitsabfrage aktiviert ist. Bei einer logischen ,0' in diesem Bit wird die Sicherheitsabfrage umgangen. Es können bis zu 8 Werte eingestellt werden. Daraus ergibt sich ein Wertebereich von 0 bis 255.

Wert:	Bedeutung:
1	Nach Einstellung Integrationszeit der SMU238; Vor Nullung SMU238 auf 0mA DC
2	Nach Einstellung SMU238 mit 0mA DC; Vor Einstellung Compliance
4	Nach Umstellung SMU238 auf Pulsbetrieb
8	Vor Einschalten der SMU (Operate)
16	Vor Einstellen der Pulsparameter (Pulsstrom, Pulszeit)
32	Vor Triggerung der SMU238
64	Nach Messung; Vor Ausschalten der SMU238
128	Nach Ausschalten der SMU238; Vor Umstellen von Pulsbetrieb auf DC-Betrieb

www.IB-Fink.de

8.2.3. SLOWMODE_IEIV_CAS140

Damit werden Sicherheitsabfragen für die SMU238 im Programmablauf eingefügt. Es ist der Programmteil betroffen, bei dem das <u>le oder lv</u> mit einem <u>CAS140</u> gemessen wird. Aus den binären Ziffern wird eine Zahl zusammengestellt, mit dem der Meßplatz optimal schnell läuft, ohne daß die SMU238 blockiert. Eine logische ,1' bedeutet, daß die Sicherheitsabfrage aktiviert ist. Bei einer logischen ,0' in diesem Bit wird die Sicherheitsabfrage umgangen. Es können bis zu 6 Werte eingestellt werden. Die restlichen zwei Werte sind unerheblich. Es ergibt sich ein Wertebereich von 0 bis 63, wobei ein Wert von 255 zulässig ist.

Wert:	Bedeutung:
1	Vor SMU238 Integrationszeiteinstellung
2	Vor SMU238 DC-Einstellung mit 0mA
4	Vor Compliance-Einstellung der SMU238
8	Nach Dunkellichtabgleich des CAS140; Vor Stromeinprägung mit der SMU238
16	Nach Abschalten der Stromeinprägung; Vor Einstellung SMU238 mit 0mA DC
32	Ende der Ielv-Prozedur; Vor Verlassen der Routine; Warten, daß SMU238 korrekten
	Zustand erreicht
64	- (unbedeutend)
128	- (unbedeutend)

8.2.4. SLOWMODE_LAMBDA_CAS140

Damit werden Sicherheitsabfragen für die SMU238 im Programmablauf eingefügt. Es ist der Programmteil betroffen, bei dem das Lambda mit einem CAS140 gemessen wird. Aus den binären Ziffern wird eine Zahl zusammengestellt, mit dem der Meßplatz optimal schnell läuft, ohne daß die SMU238 blockiert. Eine logische ,1' bedeutet, daß die Sicherheitsabfrage aktiviert ist. Bei einer logischen ,0' in diesem Bit wird die Sicherheitsabfrage umgangen. Es können bis zu 5 Werte eingestellt werden. Die restlichen drei Werte sind unerheblich. Es ergibt sich ein Wertebereich von 0 bis 31, wobei ein Wert von 255 zulässig ist.

Wert:	Bedeutung:
1	Nach SMU238-Einstellungen: Integration; Ausschalten und Einstellen mit 0mA DC
2	Nach Einstellung der Compliance
4	Nach Dunkellichtmessung
8	Nach Einstellung der SMU238 mit dem einzuprägendem Strom
16	Nach Ausschalten der SMU238 und zurückstellen auf 0mA DC
32	- (unbedeutend)
64	- (unbedeutend)
128	- (unbedeutend)

8.2.5. IS_CAS140_FILTER_XXXXXXX

Hier gibt es mehrere Eintragungen, die sich gegenseitig ausschließen müssen. Entsprechend der Freigabe von einem der Parameter durch 'TRUE' (die anderen Parameter müssen mit 'FALSE' gesperrt werden), erfolgt die Ansteuerung der Filterrad-Verstellung des CAS140B-Analyzers.

IS_CAS140_FILTER_SCANNER	Steuerung über GPIB zum Keithley-Scanner 705 oder 706. Dort wird die Digitale-I/O-Schnittstelle (TTL; 8Bit-Eingang; 8Bit-Ausgang) benutzt, um die TTL-Schnittstelle des ORIEL-Controllers am CAS140B anzusteuern.
IS_CAS140_FILTER_DLL	Über die 'USE_CAS.DLL', die auch zum Messen mit dem CAS140B verwendet wird, wird auch das Filterrad angesteuert.
IS_CAS140_FILTER_DIO96	Im Rechner muß eine zusätzliche National-Instruments-I/O-Karte vom Typ PCI-DIO96 eingebaut sein. Über die Ports 0 (=Eingang) und 3 (=Ausgang) werden TTL-Steuerspannungen ausgegeben und eingelesen. Die Bits für die Belegung der beiden Ports ist identisch zu den Bits am Keithley-Scanner.

8.2.6. NI_PCI_DIO96

Gibt an, ob die National-Instruments-I/O-Karte im PC eingebaut ist.

INGBÜRO	R.FINK	/	Entwicklung vor	Hard- und Software
93170 Bernhardswald	www.IB-Fink.de		Tel.: 09407/90640	Fax.: 09407/90641

9. Hardware-Peripherie:

Mit dem Programm wird normalerweise nur die GPIB-Schnittstelle von Keithley bedient. Damit werden dann sämtliche Meßgeräte angesteuert. Im Laufe der Zeit wurde das Programm aber auch für exotischere Meßgeräte, die u.U. sogar eine eigene Karte im PC haben weiterentwickelt. Diese Karten liefern unter Umständen an bestimmten Leitungen Steuersignale, die hier dokumentiert werden sollen.

9.1 PCI-DIO96

Die Karte von National-Instruments dient zum Steuern der Peripherie. Es sind 12 Ports zu je 8 Bit verfügbar. Diese Ports sind folgendermaßen verwendet:

Port:	Portbezeich.DIO96	Verwendung:
0	APA0 bis APA7	Eingabeport für User-Funktionen, z.B. Steuerung
		CAS140B-Filterrad
1	APB0 bis APB7	
2	APC0 bis APC7	
3	BPA0 bis BPA7	Ausgabeport für User-Funktionen, z.B. Steuerung
		CAS140B-Filterrad
4	BPB0 bis BPB7	
5	BPC0 bis BPC7	
6	CPA0 bis CPA7	
7	CPB0 bis CPB7	
8	CPC0 bis CPC7	
9	DPA0 bis DPA7	
10	DPB0 bis DPB7	
11	DPC0 bis DPC7	

Anschluß der Userports der DIO96 und dem Connector-Block 1:

Pinbelegung von Port:	Anschluß Connector-Block	Funktion:
+5V	1 / 49	Spannungsversorgung
GND	1 / 50	Ground: ORIEL/CAS140 Pin1
APA0 (Input)	1 / 47	ORIEL/CAS140 Pin2; Filterrad: BUSY
APA1 (Input)	1 / 45	ORIEL/CAS140 Pin3; Filterrad: Home
APA2 (Input)	1 / 43	
APA3 (Input)	1 / 41	
APA4 (Input)	1 / 39	
APA5 (Input)	1 / 37	
APA6 (Input)	1 / 35	
APA7 (Input)	1 / 33	
BPA0 (Output)	1 / 48	ORIEL/CAS140 Pin4; Filterrad: STEP
BPA1 (Output)	1 / 46	Test-LED
BPA2 (Output)	1 / 44	
BPA3 (Output)	1 / 42	
BPA4 (Output)	1 / 40	
BPA5 (Output)	1 / 38	
BPA6 (Output)	1 / 36	
BPA7 (Output)	1/34	

ING.-BÜRO R.FINK 93170 Bernhardswald www.

www.IB-Fink.de

10. Ausfallkennzeichen

Jede Messung hat einen spezifischen Ausfallbuchstaben. Sind mehrere verschiedene Bias einer Messung vorhanden, kann nur ein Ausfallbuchstabe (z.B. Uf-Messung bei 1mA und bei 10mA) angegeben werden. Bei einem Meßdurchgang mit mehreren verschiedenen Messungen kann bei mehreren verschiedenen Ausfällen trotzdem nur ein Ausfallbuchstabe angegeben werden. Die Meßreihenfolge ist festgelegt und kann anhand des ausgedruckten Meßprotokolls interpretiert werden. Sie ist von den angegebenen Parametern von 'links" nach 'rechts" zu lesen. Die Bewertung der Messungen erfolgt in umgekehrter Reihenfolge, also von "rechts" nach "links". Das heißt, daß die erste Messung die Messung ist, die als Letzte bewertet wird. Bei der Bewertung werden zwei Bewertungszyklen durchlaufen. Zunächst werden alle Messungen auf Verletzung der Spezifikationsgrenzen durchsucht.

Messung:	Ausfallkennzeichen:
Lichtmessung le oder lv	I
Kapazitätsmessung statisch C	С
Hallmessung	R1,R2,R3,R4
Dunkelstrommessung Id	D
Uf-Kennlinie	U
Wellenlängenmessung Lambda	L
Makro1; Matchingfaktormessung	Μ
Optische Kontrolle	0
Lichtkennlinie le oder lv	1
Widerstandsmessung; ein System	R
Widerstandsmessung; zwei Systeme	R1, R2
Widerstandsmessung; vier Systeme	R1, R2, R3, R4
Thyristormessung	Т
Sperrspannungsmessung Ubr	В
Uf-Messung	U
Uf-Hochstrommessung	Н
Sperrstrommessung Ir	J

10.1 Neben dem Ausfallzeichen, der den Hinweis auf die zuletzt verletzte Grenze gibt, wird auch angegeben, in welcher Richtung die Grenze verletzt wird.

/

- 10.1.1. Wert außerhalb der Spezifikationsgrenzen, aber innerhalb der Plausibilitätsgrenzen: oberhalb Spezifikationsgrenzen: ">" unterhalb Spezifikationsgrenzen: "<"
- 10.1.2. Wert außerhalb der Plausibilitätsgrenzen: oberhalb Plausibilitätsgrenzen: ">P"

unterhalb Plausibiltätsgrenzen: "<P"

<u>11. APA-Dokumentation</u>

11.1. Meßumgebung / APA-Beschreibung / Einstellung Equipment (Zeilen 1 bis 15)

Zeilen-Nr.	Parameter / Funktion
1	APA-Bezeichung
2	Datum der letzten Änderung dieser APA
3	<messbezeichnung> ; <handlingshinweis></handlingshinweis></messbezeichnung>
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

11.2. Ir-Kennlinienmessung

Zeilen-Nr.	Parameter / Funktion
761	Messung möglich; 1 = Messung möglich; 0 = Messung nicht möglich;
762	Einheiten Bezeichnungen Source/Value; z.B. V/uA
763	Einheiten Faktoren Source/Value; z.B. 1.0/1.0E-6
764	Messung aktiviert; 0= nicht aktiv; 1=aktiv, wobei der angegebene Zielwert in Zeile 767 der maximalen Spannung entspricht; 2=aktiv, wobei der angegebene Zielwert in Zeile 767 einem Strom entspricht. Hier wird dann zunächst eine statische Ubr-Messung für diesen Strom durchgeführt. Das Ergebnis ist dann der maximale Strom für die Kennlinie. Damit kann die Ir-Kennlinienmessung in den ansteigenden Teil bis zum Durchbruch gelegt werden.
765	
766	Start der Kennlinie (Spannung) in Volt
767	Stop der Kennlinie. Wenn in Zeile 764 eine '1' eingetragen wurde, so ist hier die maximale Spannung der Kennlinie in Volt einzutragen. Sollte in Zeile 764 eine '2' eingetragen sein, so muß hier der Strom für die vorhergehende statische Ubr-Messung in Ampere eingetragen werden.
768	Schrittweite der Kennlinienmessung (Spannung) in Volt
769	
770	Integrationsverhalten der SMU238. 1=Fast; 2=Medium; 3=Linecycle
771	Ergebnisfaktor der gemessenen Ir-Stromwerte
772	Ergebnisoffset der gemessenen Ir-Stromwerte
773	Compliance während der Ir-Messung in Ampere
774	Delay für die Spannungspulse in Millisekunden
775	
776	
777	
778	
779	

ING.-BÜRO R.FINK 93170 Bernhardswald www.

NK / www.IB-Fink.de

Entwicklung von Hard- und Software Tel.: 09407/90640 Fax.: 09407/90641

11.3. Makro3: Grafische Darstellungen von Kennlinienmessung

Zeilen-Nr.	Parameter / Funktion
601	Makro 3 möglich; 1 = True; 0 = False;
602	
603	
604	Makro 3 aktiv; 1 = True; 0 = False;
605	Uf-Kennlinie: grafische Darstellung
	0=nicht darstellen;
	1=ganze Seite mit linearer Aufteilung
606	Ir-Kennlinie: grafische Darstellung
	0=nicht darstellen;
	1=ganze Seite mit linearer Aufteilung
	2=ganze Seite mit logarithmischer Aufteilung der Werte
607	P/le/lv-Kennlinie: grafische Darstellung
	0=nicht darstellen;
	1=ganze Seite mit linearer Aufteilung
000	2=ganze Seite mit logarithmischer Aufteilung der Werte
608	R-Kennlinie: grafische Darstellung
	U=nicht darstellen;
	1=ganze Seite mit Intearer Aufteilung
600	2=galize Selle fill logalitifilischer Aufteilung der Werte
009	0-nicht darstellen:
	1-aanze Seite mit linearer Aufteilung
	2-ganze Seite mit logarithmischer Aufteilung der Werte
	3=drei Grafiken mit C:1/C ² + Neff + W
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	

ING.-BÜRO R.FINK 93170 Bernhardswald www.

NK / www.IB-Fink.de

Entwicklung von Hard- und Software Tel.: 09407/90640 Fax.: 09407/90641